Transforming Adversity into Opportunity: Leveraging Sidoarjo's Volcanic Mud for Civil and Environmental Engineering

Authors

  • Amalia Kusuma Dewi Universitas Indonesia
  • Bastian Okto Bangkit Sentosa Universitas Indonesia
  • Sandyanto Adityosulindro Universitas Indonesia

DOI:

https://doi.org/10.58344/jws.v4i6.1451

Keywords:

Sidoarjo mud, Construction materials, Wastewater treatment, Adsorbent; Catalyst, Waste to Materials

Abstract

The Sidoarjo volcanic mudflow disaster in East Java, which began in 2006, has caused ongoing environmental and socio-economic challenges. However, the volcanic mud’s unique composition, rich in silica (SiO?), alumina (Al?O?), and iron oxide (Fe?O?), presents significant potential for resource recovery. This review utilizes a Systematic Literature Review (SLR) approach, following the PRISMA 2020 guidelines, to analyze 49 relevant publications from 2013 to 2024. The findings indicate that treated Sidoarjo mud can be effectively utilized in various civil engineering applications, including ceramic tiles, concrete bricks, geopolymer binders, and road base stabilizers, fulfilling national performance standards while contributing to reduced carbon emissions and construction costs. Moreover, Sidoarjo mud demonstrates its value in environmental engineering, showing effectiveness as an adsorbent for heavy metals, dyes, and organic pollutants in water treatment, as well as serving as a catalyst support in biodiesel production. This review underscores the multidisciplinary value of Sidoarjo mud, positioning it as a key material in advancing circular economy practices and promoting environmentally sustainable innovations within the built environment.

References

Agipa, A. I., & Muarif, M. F. (2022). Phospate Release Study on Silica Gel and Amino Silica Hybrid Sorbent from Lapindo Mud. Jurnal Akademika Kimia, 11(2), 83–90. https://doi.org/10.22487/j24775185.2022.v11.i2.pp83-90

Aji, F., Hadiwidodo, M., & Samudro, G. (2014). Solidifikasi Lumpur Lapindo dalam Upaya Pencegahan Pencemaran Lingkungan sebagai Bahan Campuran Paving Block.

Alfiansyah, A. (2017). Pengaruh Penambahan Kapur terhadap Kuat Tekan dan Permeabilitas Paving Block Geopolymer Berbahan Dasar Abu Terbang dan Lumpur Lapindo. Jurnal Rekayasa Teknik Sipil.

Alfina, S. A., Zulfa, A., & Fauzi Hendratmoko, A. (2024). Potensi Kerusakan Ekosistem sebagai Dampak Luapan Lumpur Lapindo: A Systematic Literature Review. Jurnal Ilmiah Multidisiplin, 1(4), 281–287. https://doi.org/10.62017/merdeka

Amiruddin, J., Firdaus, W. A., & Sutrisno, H. H. (2022). The Compressive Strength Characteristics of Glass Fiber Reinforced Cement Concrete with Silica Sand Material Added from Sidoarjo Lapindo Volcano Mud.

Andrean Subroto, R., Januar Utomo, D., & Hardjito, D. (2015). Pembuatan Agregat Ringan Geopolimer berbasis Lumpur Sidoarjo dan Fly Ash dengan menggunakan Foam Agent.

A’yuni, Q., Rahmayanti, A., Hartati, H., Purkan, P., Subagyo, R., Rohmah, N., Itsnaini, L. R., & Fitri, M. A. (2023). Synthesis and characterization of silica gel from Lapindo volcanic mud with ethanol as a cosolvent for desiccant applications. RSC Advances, 13(4), 2692–2699. https://doi.org/10.1039/d2ra07891k

Caroline, J., & Propika, D. J. (2021). Pre Feasibility Studi Pemanfaatan Lumpur Lapindo Sebagai Material Alternative Untuk Stoneware Dan Arthwaremum.

Ciptawati, E., Hilfi, M., Dzikrulloh, A., Septiani, M. O., Rinata, V., Rokhim, D. A., Azfafauziyyah, N., & Sribuana, D. (2022). Analisis Kandungan Mineral dari Lumpur Panas Sidoarjo sebagai Potensi Sumber Silika dan Arah Pemanfaatannya. Ind. J. Chem. Anal, 05(01), 18. https://doi.org/10.20885/ijca.vol5.iss1.art3

Citrasari, N., Pratiwi, N. G., Hariyanto, S., & Octavia, L. S. (2019). Eco-cement production with alternative resources: Recycling solution for shells ashes, organic husk ashes, organic waste ashes, and industrial sludge waste. IOP Conference Series: Earth and Environmental Science, 245(1). https://doi.org/10.1088/1755-1315/245/1/012009

Dewi, K., Al Ifah, A., & Trisunaryanti, W. (2017). Synthesis of MCM-41-NH2 Catalyst by Sonochemical Method for Transesterification of Waste Palm Oil Synthesis of MCM-41-NH 2 Catalyst by Sonochemical Method for Transesterification of Waste Palm Oil. https://www.researchgate.net/publication/321900667

Dibiantara, D. P., Lutfi Manfaluthy, M., Ekaputri, J. J., & Triwulan, D. (2015). Pemanfaatan Lumpur Sidoarjo untuk Bata Beton Berserat dengan Bahan Pengisi Serat Kenaf.

Ekaputri, J. (2007). Analisa Sifat Mekanik Beton Geopolimer Berbahan Dasar Fly Ash dan Lumpur Porong Kering Sebagai Pengisi. Jurnal TORSI, 27, 33–46.

Faza Nisrina, K., Adityosulindro, S., & Direstiyani, L. C. (2024). Utilization of Sidoarjo Volcanic Mud as Heterogeneous Catalyst in Persulfate Oxidation Process. 21(2), 369–380.

Golomeova, M., & Zendelska, A. (2016). Application of Some Natural Porous Raw Materials for Removal of Lead and Zinc from Aqueous Solutions. https://doi.org/10.5772/62347

Hardjito, D., & Antoni. (2013). Potentials of LUSI Volcanic Mud as Construction Materials. Asian Bulletin of Engineering Science and Technology, 1(1), 1–6. http://www.abestjournal.orghttp://www.abestjournal.org

Ikhsan, J., Sulastri, S., & Priyambodo, E. (2017). The Modification of Silica Surface separated from Overflowing Mud in Lapindo Indonesia as Cation Exchange Adsorbent.

Jaelani, A., & Prajitno, A. (2019). Studi Penelitian Pemanfaatan Lumpur Lapindo sebagai Filler Kombinasi Abu Bata Pada Beton Aspal (AC-WC) (Vol. 1).

Jalil, A. A., Triwahyono, S., Adam, S. H., Rahim, N. D., Aziz, M. A. A., Hairom, N. H. H., Razali, N. A. M., Abidin, M. A. Z., & Mohamadiah, M. K. A. (2010). Adsorption of methyl orange from aqueous solution onto calcined Lapindo volcanic mud. Journal of Hazardous Materials, 181(1–3), 755–762. https://doi.org/10.1016/j.jhazmat.2010.05.078

Junaidi, R., Hasan, A., & Zamhari, M. (2019). Influence the Addition of Lapindo Mud is Calcined to the Quality of Cement Podzoland by Using Electric Furnace. Journal of Physics: Conference Series, 1167(1). https://doi.org/10.1088/1742-6596/1167/1/012043

Kusumastuti, H., Trisunaryanti, W., Izul Falah, I., & Fajar Marsuki, M. (2018). Synthesis of Mesoporous Silica-Alumina from Lapindo Mud as a Support of Ni and Mo Metals Catalysts for Hydrocracking of Pyrolyzed a-cellulose. Rasayan Journal of Chemistry, 11(2), 522–530. https://doi.org/10.31788/rjc.2018.1122061

Lasino, & Sugiarto, B. (2018). Lusi Sebagai Material Konstruksi. Pusat Penelitian dan Pengembangan Permukiman.

Lestari, R. S., & Razif, M. (2019). Pemanfaatan Lumpur Lapindo Sebagai Batako Menggunakan Semen Portland dan Abu Sekam Padi dengan Stabilisasi/Solidifikasi Kandungan Logam Pb.

Mahardika, I. B. P., Trisunaryanti, W., Triyono, T., Wijaya, D. P., & Dewi, K. (2017). Transesterification of used cooking oil using CaO/MCM-41 catalyst synthesized from lapindo mud by sonochemical method. Indonesian Journal of Chemistry, 17(3), 509–515. https://doi.org/10.22146/ijc.26561

Masbuhin. (2020). Pengaruh Subtitusi Lumpur Sidoarjo (LUSI) terhadap Kuat Tekan Bata Beton (Paving Block). 13(2), 2620–4770.

Meysita Pramaesti, R. (2021). Expansive Soil Stabilization using Mud (Lapindo) and Asphalt Emulsion.

Mochni, E., & Budhyantoro, A. (2021). Pembuatan Batubata dengan Bahan Baku Lumpur Sidoarjo. Edisi Juni, 17(1), 1–8.

Mustafa Al Bakri, A. M., Rafiza, A. R., Hardjito, D., Kamarudin, H., & Khairul Nizar, I. (2012). Characterization of LUSI mud volcano as geopolymer raw material. Advanced Materials Research, 548, 82–86. https://doi.org/10.4028/www.scientific.net/AMR.548.82

Novendra, H. A., Qomariah, & Naibaho, A. (2024). Pengaruh Subtitusi Lumpur Lapindo sebagai Filler terhadap Karakteristik Campuran Aspal Beton AC-WC. JOS-MRK, 5, 109–116. http://jurnal.polinema.ac.id/

Nuri, W., & Retno, D. T. (2015). Pemanfaatan Lumpur Lapindo sebagai Bahan Baku Pembuatan Genteng dengan Variasi Suhu Pembakaran. Yogyakarta Jalan SWK, XII(01), 55283.

Paramesti, C., Trisunaryanti, W., Sudiono, S., Triyono, T., Larasati, S., Santoso, N. R., & Fatmawati, D. A. (2021). The influence of metal loading amount on ni/mesoporous silica extracted from lapindo mud templated by ctab for conversion of waste cooking oil into biofuel. Bulletin of Chemical Reaction Engineering and Catalysis, 16(1), 22–30. https://doi.org/10.9767/BCREC.16.1.9442.22-30

Parningotan, S., Direstiyani, L. C., & Adityosulindro, S. (2024). Sidoarjo Volcanic Mud as Promising Fenton Catalyst for Removal of Congo Red Dye. INDONESIAN JOURNAL OF URBAN AND ENVIRONMENTAL TECHNOLOGY, 134–150. https://doi.org/10.25105/urbanenvirotech.v7i2.20772

Permatasari, T., Rahman, A., Rizki Arifuddin, M., Danial Firmansyah, A., Rahmayanti, A., Sumiyarsono, E., & Khilyatul Afkar, dan. (2023). Penyisihan BOD, COD, TSS, dan TDS Menggunakan Adsorben Lumpur Lapindo dan Cangkang Kerang Darah pada Limbah Tekstil Jetis Sidoarjo. Journal of Research and Technology, 9(2), 245–251.

Pertiwi, D., & Theresia Maria, C. A. (2012). Alternatif Penggunaan Lumpur Lapindo sebagai Pengganti Sebagian Semen untuk Bahan Bangunan. Jurnal Iptek, 67–73.

Rafiza, A. R., Al Bakri, A. M. M., Kamarudin, H., Nizar, I. K., Hardjito, D., Wan Badaruzzaman, W. H., & Zarina, Y. (2014). Microstructure study on volcano ash geopolymer aggregate at different sintering temperature. Key Engineering Materials, 594–595, 83–87. https://doi.org/10.4028/www.scientific.net/KEM.594-595.83

Razak, R. A., Abdullah, M. M. A. B., Hussin, K., Ismail, K. N., Hardjito, D., & Yahya, Z. (2015). Optimization of NaOH molarity, LUSI mud/alkaline activator, and Na2SiO3/NaOH ratio to produce lightweight aggregate-based geopolymer. International Journal of Molecular Sciences, 16(5), 11629–11647. https://doi.org/10.3390/ijms160511629

Razak, R. A., Al, M. M., Abdullah, B., Kamarudin, H., Nizar, K., & Al, M. (2013). Study on Radioactivity Components, Water Quality and Microstructure Characteristic of Volcano Ash as Geopolymer Artificial Aggregate. https://www.researchgate.net/publication/249011374

Roberts, A., Stewart, G., & Pullin, A. (2006). Are review articles a reliable source of evidence to support conservation and environmental management? A comparison with medicine. Biological Conservation, 132, 409–423. https://doi.org/10.1016/j.biocon.2006.04.034

Rosanti, W. M., & Winanti, E. T. (2016). Pemanfaatan Lumpur Lapindo dan Fly Ash sebagai Bahan Campuran pada Pembuatan Bata Beton Ringan.

Sa’diyah, K., Syarwani, M., & Hadiantoro, S. (2017). Adsorption of Nickel in Nickel Sulphate Solution (NiSO4) by Lapindo Mud. Jurnal Bahan Alam Terbarukan, 6(1), 39–44. https://doi.org/10.15294/jbat.v6i1.7963

Sri Utami, G. (2015). Mud Utilization of Lapindo as Soil Stabilization Materials that Contain Salt Clay. 10. www.arpnjournals.com

Sri Utami, G., & Choiriyah, S. (2018). Lapindo Mud Behavior Stabilization using Sand Mixture. International Journal of Advanced Research, 6(12), 749–754. https://doi.org/10.21474/IJAR01/8195

Sriatun, Yulianto, A., & Sulhadi. (2013). Analisis Sifat Mekanik Genteng Keramik Hasil Campuran Lumpur Lapindo. http://journal.unnes.ac.id/sju/index.php/upj

Sudjianto, A. T., Susilo, S. H., Tolan, P. M., Agung, P. A. M., & Hasan, M. F. R. (2023). Increasing the Stability of Expansive Soil using Lapindo Sediments Materials. International Journal of GEOMATE, 25(108), 154–162. https://doi.org/10.21660/2023.108.3767

Swasdika, F., Trisunaryanti, W., & Falah, I. I. (2021). Hydrotreatment of cellulose-derived bio-oil using copper and/or zinc catalysts supported on mesoporous silica-alumina synthesized from lapindo mud and catfish bone. Indonesian Journal of Chemistry, 21(2), 268–278. https://doi.org/10.22146/ijc.50558

Talib, N. B., Triwahyono, S., Jalil, A. A., Mamat, C. R., Salamun, N., Fatah, N. A. A., Sidik, S. M., & Teh, L. P. (2016). Utilization of a cost effective Lapindo mud catalyst derived from eruption waste for transesterification of waste oils. Energy Conversion and Management, 108, 411–421. https://doi.org/10.1016/J.ENCONMAN.2015.11.031

Trimayanto, S., Kurnianingsih, R., Tiyas Widyawati, A., & Rezty Hertiwi, L. (2019). Handling Mercury (Hg) Waste through Utilization of Lapindo Activated Mud HCl to Realize Environmentally Friendly Gold Mining.

Trisunaryanti, W., Alethiana, A., Falah, I. I., & Fatmawati, D. A. (2022). Effective production of biofuel from used cooking oil over Ni–Pd loaded on amine-functionalized Lapindo Mud catalyst. Reaction Kinetics, Mechanisms and Catalysis, 135(2), 951–970. https://doi.org/10.1007/s11144-022-02191-0

Trisunaryanti, W., Azizah, S. N., Fatmawati, D. A., Triyono, T., & Ningrum, N. C. (2022). Performance of a Hybrid Catalyst from Amine Groups and Nickel Nanoparticles Immobilized on Lapindo Mud in Selective Production of Bio-hydrocarbons. Indonesian Journal of Chemistry, 22(4), 896–912. https://doi.org/10.22146/ijc.70667

Trisunaryanti, W., Triyono, Paramesti, C., Larasati, S., Santoso, N. R., & Fatmawati, D. A. (2020). Synthesis and characterization of ni-nh2/mesoporous silica catalyst from lapindo mud for hydrocracking of waste cooking oil into biofuel. Rasayan Journal of Chemistry, 13(3), 1386–1393. https://doi.org/10.31788/RJC.2020.1335840

Trisunaryanti, W., Triyono, Santoso, N. R., Larasati, S., Paramesti, C., & Fatmawati, D. A. (2021). Enhancement of cobalt concentration supported on mesoporous silica towards the characteristics and activities of catalysts for the conversion of waste coconut oil into gasoline and diesel oil. Indonesian Journal of Chemistry, 21(3), 527–536. https://doi.org/10.22146/ijc.55633

Trisunaryanti, W., Triyono, T., Fallah, I. I., Salsiah, S., & Alisha, G. D. (2022). Highly Selective Bio-hydrocarbon Production using Sidoarjo Mud Based-Catalysts in the Hydrocracking of Waste Palm Cooking Oil. Bulletin of Chemical Reaction Engineering and Catalysis, 17(4), 712–724. https://doi.org/10.9767/bcrec.17.4.15472.712-724

Trisunaryanti, W., Triyono, T., Resa, R. M., & Larasati, S. (2024). Performance of Pd and Pt noble metal impregnated on Lapindo mud-based mesoporous silica on hydrotreatment of waste cooking oil into biogasoline. Materials Today Sustainability, 28. https://doi.org/10.1016/j.mtsust.2024.100978

Tsaqif, W. G., Kuswindayani, N. Y., Febriyanti, V. N. A., Nurdiansah, H., Raditya, R. F., & Arief, M. H. (2024). Development of Geopolymer/Activated Carbon Composite Mortar from PLTU Paiton Fly Ash with the Addition of Sidoarjo Mud Waste. Journal of Physics: Conference Series, 2780(1). https://doi.org/10.1088/1742-6596/2780/1/012018

Ulfindrayani Fitri, I., Ikhlas, N., A’yuni, Q., Fanani, N., Lumban Gaol, B., Lestari, D., Teknologi, I., & Nopember, S. (2019). Pengaruh Ekstraksi SiO2 dari Lumpur Lapindo Terhadap Daya Adsorpsinya pada Larutan Metil Orange. CHEESA, 2(2), 50. http://e-journal.unipma.ac.id/index.php/cheesa

Utami, G. S., & Usada, U. (2018). Analysis of Lapindo Mud Utilization and Steel Slag as a Mixture Stabilization of Clay. International Journal of Advanced Research, 6(4), 915–923. https://doi.org/10.21474/IJAR01/6928

Wijaya, D. P., Trisunaryanti, W., Triyono, Dewi, K., & Marsuki, M. F. (2018). Synthesis and characterization of K2O/MCM-41 (Mobil Composition of Matter No. 41) from Lapindo Mud by sonochemical method for transesterification catalyst of used cooking oil. Oriental Journal of Chemistry, 34(4), 1847–1853. https://doi.org/10.13005/ojc/3404019

Yolanda Putri, K., & Fauzi, A. (2019). Pengaruh Penggunaan Lumpur Sidoarjo sebagai Substitusi Material Fly Ash pada Geopolimer. Proceeding Seminar Nasional Politeknik Negeri Lhokseumawe, 3(1).

Zahro, S., & Adityosulindro, S. (2024). Studi Preliminer Pemanfaatan Lumpur Vulkanik Sidoarjo Sebagai Adsorben Zat Warna Napthol di Air Limbah Batik. Dinamika Lingkungan Indonesia, 11.

Zuhara, W., Nuryanto, R., Lusiana, R. A., & Efiyanti, L. (2024). Pemanfaatan Lumpur Lapindo sebagai Sumber Silika Magnetik untuk Adsorpsi Tumpahan Crude Palm Oil. Jurnal Riset Kimia, 15(1), 112–122. https://doi.org/10.25077/jrk.v15i1.658

Downloads

Published

2025-06-25

How to Cite

Dewi, A. K., Sentosa, B. O. B. ., & Adityosulindro, S. . (2025). Transforming Adversity into Opportunity: Leveraging Sidoarjo’s Volcanic Mud for Civil and Environmental Engineering. Journal of World Science, 4(6), 769–782. https://doi.org/10.58344/jws.v4i6.1451