Analysis and Design of Student Point Systems to Improve Student Achievement using The Clustering Method

Authors

  • Ade Bani Riyan Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI, Bandung https://orcid.org/0000-0001-8419-0777
  • Mochamad Fikri Rifai Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI, Bandung
  • Christina Juliane Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI, Bandung

DOI:

https://doi.org/10.58344/jws.v2i3.155

Keywords:

clustering method, student achievement, student point system

Abstract

The student points system is an application for recording students' achievement and offense points. The lack of recording and dissemination of information on achievement results makes students less motivated to improve achievement, and the distribution of scholarships for outstanding students is inappropriate. To improve student achievement, an application program is needed that can record and disseminate student achievement data in real-time, accurate, and effective. So, the purpose in this study is to know and analyze the design of the student point system to improve student achievement using the clustering method. Researchers use the Clustering Method in calculating data to determine the accuracy of scholarship distribution for outstanding students. Clustering with the most achievement points is clustering 2 with 25,254 Achievement Points. The total number in the level 2 cluster is 1,797 which indicates the number is close to 2,000 or 2 which is the result of data transformation from the junior high level. The implication of clustering research on student point data is to provide useful information for the Foundation as an institution that houses schools in allocating scholarships for outstanding students. In this case, clustering 2 with the highest number of Achievement Points indicates that there is a group of students with high achievement points. By using the clustering results, the Foundation can allocate scholarships more effectively and efficiently, because it can identify outstanding students from various school levels more easily.

Author Biography

Ade Bani Riyan, Sekolah Tinggi Manajemen Informatika dan Komputer LIKMI, Bandung

Fulltime Learner__

References

Adiya, M. H., & Desnelita, Y. (2019). Jurnal Nasional Teknologi dan Sistem Informasi Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru. Vol, 1, 17–24.

Al-Hendawi, M., Keller, C., & Khair, M. S. (2023). Special Education in the Arab Gulf Countries: An Analysis of Ideals and Realities. International Journal of Educational Research Open, 4, 100217. https://doi.org/10.1016/j.ijedro.2022.100217

Dwijaya, D. A. (2020). Perancangan Aplikasi Untuk Pelanggaran Dan Prestasi Siswa Pada Smp Kartika Ii-2 Bandar Lampung. Jurnal Informatika Dan Rekayasa Perangkat Lunak, 1 (2), 127–136. https://doi.org/10.33365/jatika.v1i2.313

Fauzi, M. S., & Samsudin, S. (2022). Smart School Berbasis Web Interaktif di SD Swasta Amaliyah Sunggal dengan Algoritma K-Means Cluster. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 11(3), 332–341.

Gorunescu, F. (2011). Data Mining: Concepts, models and techniques (Vol. 12). Springer Science & Business Media.

Gullo, F. (n.d.). From patterns in data to knowledge discovery: what data mining can do. Phys. Procedia 62, 18–22 (2015). 3rd International Conference Frontiers in Diagnostic Technologies.

Harding, J. A., Shahbaz, M., & Kusiak, A. (2006). Data mining in manufacturing: a review.

Haryati, A. E., Wijaya, T. T., Wen, G. K., & Thobirin, A. (2022). Fuzzy subtractive clustering (FSC) with exponential membership function for heart failure disease clustering. International Journal of Artificial Intelligence Research, 6(1). https://doi.org/10.29099/ijair.v7i1.306

Maukar, A. L., Marisa, F., & Widodo, A. A. (2022). Analisis Data Penerimaan Mahasiswa Baru Berbasis K-Means. JIKO (Jurnal Informatika Dan Komputer), 6(2), 142–147.

Muhardi, M. (2004). Kontribusi pendidikan dalam meningkatkan kualitas bangsa Indonesia. Mimbar: Jurnal Sosial Dan Pembangunan, 20(4), 478–492. ttps://doi.org/10.29313/mimbar.v20i4.153

Nidheesh, N., Nazeer, K. A. A., & Ameer, P. M. (2017). An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data. Computers in Biology and Medicine, 91, 213–221. https://doi.org/10.1016/j.compbiomed.2017.10.014

Rachmawaty, D. T. (2016). Pengaruh beasiswa Bidikmisi terhadap prestasi belajar mahasiswa penerima beasiswa Bidikmisi di UIN Syarif Hidayatullah Jakarta.

Ramadhanu, A., Defit, S., & Kareem, S. W. (2021). Hybrid Data Mining with the Combination of K-Means Algorithm and C4. 5 to Predict Student Achievement. International Journal of Artificial Intelligence Research, 5 (2), 180–189.

Rosmini, R., Fadlil, A., & Sunardi, S. (2018). Implementasi Metode K-Means Dalam Pemetaan Kelompok Mahasiswa Melalui Data Aktivitas Kuliah. IT Journal Research and Development, 3 (1), 22–31.

Windarto, A. P., Komputer, I., & Bangsa, T. (2017). Implementation of Data Mining on Rice Imports by Major Country of Origin Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method. No. November. https://doi.org/10.29099/ijair.v1i2.17

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, A., Liu, B., & Yu, P. S. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14 (1), 1–37. https://doi.org/10.1007/s10115-007-0114-2

Downloads

Published

2023-03-27

How to Cite

Bani Riyan, A., Fikri Rifai, M., & Juliane, C. (2023). Analysis and Design of Student Point Systems to Improve Student Achievement using The Clustering Method. Journal of World Science, 2(3), 459–465. https://doi.org/10.58344/jws.v2i3.155