Role of Artificial Intelligence in Cardiovascular Health Care

Authors

  • Hafiz Khawar Hussain DePaul University Jarvis College of Computing & Digital Media 243 S Wabash Ave, Chicago
  • Aftab Tariq Department of Computer Science, American National University Salem Virginia
  • Ahmad Yousaf Gill Department of Computer Science, American National University Salem Virginia

DOI:

https://doi.org/10.58344/jws.v2i4.284

Keywords:

machine learning, AI, cardiovascular healthcare, disease detection, personalized treatment, risk stratification

Abstract

In the field of cardiovascular health, machine learning and artificial intelligence (AI) have become effective tools with potential applications ranging from disease detection and diagnosis to individualized treatment planning and decision making. The purpose of this study is to identify and analyze the role of AI in cardiovascular health care. The methodology of this review paper involved an extensive literature review of the existing research on the topic of AI in cardiovascular health care. Medical imaging is very important in the diagnosis and treatment of many diseases, but the interpretation of medical images is often time-consuming and subjective. Artificial intelligence (AI) algorithms, such as supervised and unsupervised learning, have been developed to assist in the analysis and interpretation of data from medical imaging. Convolutional neural networks (CNNs) and support vector machines (SVM) are the two most frequently used AI algorithms in medical image analysis. Artificial intelligence (AI) and machine learning in cardiovascular healthcare have great potential to improve patient outcomes and lower costs. However, there are still some hurdles that need to be overcome such as integration with clinical workflows, model validation and generalization, and privacy and security issues related to patient data. To overcome this, collaboration between doctors, researchers and industrial partners is needed. This technology has a bright and promising future with continuous investment in research and development.

References

Al’Aref, S. J., Anchouche, K., Singh, G., Slomka, P. J., Kolli, K. K., Kumar, A., Pandey, M., Maliakal, G., Van Rosendael, A. R., & Beecy, A. N. (2019). Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. European Heart Journal, 40(24), 1975–1986. https://doi.org/10.1093/eurheartj/ehy404

Balanescu, D. V., Monlezun, D. J., Teodora Donisan, M. D., David Boone, M. D., Frances Cervoni-Curet, M. D., Nicolas Palaskas, M. D., Juan Lopez-Mattei, M. D., Peter Kim, M. D., Cezar Iliescu, M. D., & Balanescu, S. M. (2018). A cancer paradox: machine-learning backed propensity-score analysis of coronary angiography findings in cardio-oncology. Journal of Invasive Cardiology, 31(1).

Cavallari, L. H., & Weitzel, K. (2015). Pharmacogenomics in cardiology–genetics and drug response: 10 years of progress. Future Cardiology, 11(3), 281–286.

Constantinides, P., & Fitzmaurice, D. A. (2018). Artificial intelligence in cardiology: applications, benefits and challenges. Br J Cardiol, 25(3), 86–87. doi:10.5837/bjc.2018.024

Deo, R. C. (2015). Machine learning in medicine. Circulation, 132(20), 1920–1930.

Dilsizian, M. E., & Siegel, E. L. (2018). Machine meets biology: a primer on artificial intelligence in cardiology and cardiac imaging. Current Cardiology Reports, 20, 1–7.

Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer, K., Miotto, R., Ali, M., Ashley, E., & Dudley, J. T. (2018). Artificial intelligence in cardiology. Journal of the American College of Cardiology, 71(23), 2668–2679.

Kalinin, A. A., Higgins, G. A., Reamaroon, N., Soroushmehr, S., Allyn-Feuer, A., Dinov, I. D., Najarian, K., & Athey, B. D. (2018). Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics, 19(7), 629–650. https://doi.org/10.2217/pgs-2018-0008

Khamis, H., Zurakhov, G., Azar, V., Raz, A., Friedman, Z., & Adam, D. (2017). Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Medical Image Analysis, 36, 15–21. https://doi.org/10.1016/j.media.2016.10.007

Kitzmiller, J. P., Mikulik, E. B., Dauki, A. M., Murkherjee, C., & Luzum, J. A. (2016). Pharmacogenomics of statins: understanding susceptibility to adverse effects. Pharmacogenomics and Personalized Medicine, 97–106.

Krittanawong, C., Bomback, A. S., Baber, U., Bangalore, S., Messerli, F. H., & Wilson Tang, W. H. (2018). Future direction for using artificial intelligence to predict and manage hypertension. Current Hypertension Reports, 20, 1–16.

Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657–2664.

Laser, K. T., Horst, J.-P., Barth, P., Kelter-Klöpping, A., Haas, N. A., Burchert, W., Kececioglu, D., & Körperich, H. (2014). Knowledge-based reconstruction of right ventricular volumes using real-time three-dimensional echocardiographic as well as cardiac magnetic resonance images: comparison with a cardiac magnetic resonance standard. Journal of the American Society of Echocardiography, 27(10), 1087–1097. https://doi.org/10.1016/j.echo.2014.05.008

Lee, K.-T., Hour, A.-L., Shia, B.-C., & Chu, P.-H. (2017). The application and future of big database studies in cardiology: a single-center experience. Acta Cardiologica Sinica, 33(6), 581.

Li, Q., Wang, J., Tao, H., Zhou, Q., Chen, J., Fu, B., Qin, W., Li, D., Hou, J., & Chen, J. (2020). The prediction model of warfarin individual maintenance dose for patients undergoing heart valve replacement, based on the back propagation neural network. Clinical Drug Investigation, 40, 41–53. https://doi.org/10.1007/s40261-019-00850-0

Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S. E., & Frangi, A. F. (2016). A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magnetic Resonance Materials in Physics, Biology and Medicine, 29, 155–195. https://doi.org/10.1007/s10334-015-0521-4

Pirmohamed, M., Burnside, G., Eriksson, N., Jorgensen, A. L., Toh, C. H., Nicholson, T., Kesteven, P., Christersson, C., Wahlström, B., & Stafberg, C. (2013). A randomized trial of genotype-guided dosing of warfarin. N Engl J Med, 369, 2294–2303.

Powles, J., & Hodson, H. (2017). Google DeepMind and healthcare in an age of algorithms. Health and Technology, 7(4), 351–367. https://doi.org/10.1007/s12553-017-0179-1

Przewlocka-Kosmala, M., Marwick, T. H., Dabrowski, A., & Kosmala, W. (2019). Contribution of cardiovascular reserve to prognostic categories of heart failure with preserved ejection fraction: a classification based on machine learning. Journal of the American Society of Echocardiography, 32(5), 604–615. https://doi.org/10.1016/j.echo.2018.12.002

Shah, S. J. (2017). Precision medicine for heart failure with preserved ejection fraction: an overview. Journal of Cardiovascular Translational Research, 10(3), 233–244. https://doi.org/10.1007/s12265-017-9756-y

Shah, S. J., Katz, D. H., Selvaraj, S., Burke, M. A., Yancy, C. W., Gheorghiade, M., Bonow, R. O., Huang, C.-C., & Deo, R. C. (2015). Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation, 131(3), 269–279.

Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: are we there yet? Heart, 104(14), 1156–1164.

Sibbing, D., Aradi, D., Alexopoulos, D., Ten Berg, J., Bhatt, D. L., Bonello, L., Collet, J.-P., Cuisset, T., Franchi, F., & Gross, L. (2019). Updated expert consensus statement on platelet function and genetic testing for guiding P2Y12 receptor inhibitor treatment in percutaneous coronary intervention. JACC: Cardiovascular Interventions, 12(16), 1521–1537.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., & Bolton, A. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354–359.

Syn, N. L., Wong, A. L.-A., Lee, S.-C., Teoh, H.-L., Yip, J. W. L., Seet, R., Yeo, W. T., Kristanto, W., Bee, P.-C., & Poon, L. M. (2018). Genotype-guided versus traditional clinical dosing of warfarin in patients of Asian ancestry: a randomized controlled trial. BMC Medicine, 16(1), 1–10.

van Rosendael, A. R., Maliakal, G., Kolli, K. K., Beecy, A., Al’Aref, S. J., Dwivedi, A., Singh, G., Panday, M., Kumar, A., & Ma, X. (2018). Maximization of the usage of coronary CTA derived plaque information using a machine learning based algorithm to improve risk stratification; insights from the CONFIRM registry. Journal of Cardiovascular Computed Tomography, 12(3), 204–209. https://doi.org/10.1016/j.jcct.2018.04.011

Zellweger, M. J., Brinkert, M., Bucher, U., Tsirkin, A., Ruff, P., & Pfisterer, M. E. (2014). A new memetic pattern based algorithm to diagnose/exclude coronary artery disease. International Journal of Cardiology, 174(1), 184–186. https://doi.org/10.1016/j.ijcard.2014.03.184

Zellweger, M. J., Tsirkin, A., Vasilchenko, V., Failer, M., Dressel, A., Kleber, M. E., Ruff, P., & März, W. (2018). A new non-invasive diagnostic tool in coronary artery disease: artificial intelligence as an essential element of predictive, preventive, and personalized medicine. EPMA Journal, 9, 235–247. https://doi.org/10.1007/s13167-018-0142-x

Zhou, J., Qu, F., Sang, X., Wang, X., & Nan, R. (2011). Acupuncture and auricular acupressure in relieving menopausal hot flashes of bilaterally ovariectomized Chinese women: a randomized controlled trial. Evidence-Based Complementary and Alternative Medicine, 2011.

Downloads

Published

2023-04-30

How to Cite

Khawar Hussain, H., Tariq, A., & Yousaf Gill, A. . (2023). Role of Artificial Intelligence in Cardiovascular Health Care. Journal of World Science, 2(4), 583–591. https://doi.org/10.58344/jws.v2i4.284