Classification of Traffic Congestion in Indonesia Using the Naive Bayes Classification Method
DOI:
https://doi.org/10.58344/jws.v2i6.285Keywords:
congestion classification, naïve bayes, trafficAbstract
The purpose of this research is to analyze the accuracy of congestion data using Google Colab in detecting congestion by the province in Indonesia the author tries to test strategies for dealing with congestion in the Indonesian region by utilizing the Naïve Bayes method. In this journal, apply with Google Collab . This research uses data that comes from crawling data on Twitter. Using the Naive Bayes method to find the shortest route is efficient and not congested. Implementation of online school transportation using the naive Bayes method in minimizing travel costs to pick up students can reduce traffic jams, reduce accidents, reduce student tardiness, and minimize travel costs. The Naive Bayes method can be used to identify relevant information about traffic jams in Indonesia through Twitter data with a good degree of accuracy. These results can assist decision-making and strategic planning in overcoming the problem of traffic congestion in Indonesia. Therefore, this research implies that it can help improve the accuracy of traffic congestion data in Indonesia. By using Google Colab, more advanced analysis methods and machine learning algorithms can be applied to process the existing traffic data. Additionally, utilizing Google Colab allows for fast and efficient data processing.
References
Ardini, A., & Lutfiyana, N. (2018). Metode Transportasi Untuk Mengoptimalkan Biaya Pengiriman Barang Pada PT Trimuda Nuansa Citra Jakarta. Information System For Educators And Professionals: Journal Of Information System, 3(1), 55–66.
Darmawan, A., & Makruf, M. (2023). Deteksi Gaya Belajar Siswa SMA pada Virtual Based Learning Environment (VBLE) dengan Decision Tree C4. 5 dan Naive Bayes. KLIK: Kajian Ilmiah Informatika Dan Komputer, 3(5), 532–544. https://doi.org/10.30865/klik.v3i5.760
Desmira, D., Kautsar, A., & Darmawan, A. W. (2015). Prototype Perancangan Informasi Kemacetan Jalan Tol Berbasis Mikrokontroler At89s52 Dengan Tampilan LCD. PROSISKO: Jurnal Pengembangan Riset Dan Observasi Sistem Komputer, 2(2).
Dewa, W. A., Maknunah, J., & Putri, A. D. (2021). Penerapan Metode Naïve Bayes untuk Menentukan Pengajuan Polis Baru pada PT.“XYZ.” Jurnal Ilmiah Komputasi, 20(1), 83–92. https://doi.org/10.32409/jikstik.20.1.2696
Febriyani, E., & Februariyanti, H. (2023). Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naive Bayes Classifier Di Twitter. Jurnal Tekno Kompak, 17(1), 25–38. https://doi.org/10.33365/jtk.v17i1.2061
Habiba, A., Isnanto, R. R., & Suseno, J. E. (2023). The Effect of Chi Square Feature Selection on the Naïve Bayes Algorithm on the Analysis of Indonesian Society’s Sentiment About Face-to-Face Learning During the Covid-19 Pandemic. JST (Jurnal Sains Dan Teknologi), 12(1).
Hariansyah, M. (2018). Millenials “Bukan Generasi Micin.” Guepedia.
Harjanta, A. T. J. (2015). Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining. Jurnal Informatika Upgris, 1(1 Juni). https://doi.org/10.26877/jiu.v1i1%20Juni.804
Hermanto, N., Hermaliani, E. H., & Sutinah, E. (2017). Vogell’s Aproximation Method dalam Optimalisasi Biaya Transportasi Pengiriman Koran pada PT. Arah Medialog Pembangunan. Jurnal Teknik Komputer AMIK BSI, 3(1), 30–36. https://doi.org/10.31294/jtk.v3i1.1340
Indriyani, L. (2019). Analisis penerapan Naïve Bayes untuk memprediksi resiko kredit anggota koperasi keluarga guru. Jurnal Informatika, 6(2), 262–270. https://doi.org/10.31294/ji.v6i2.5724
Janah, S. H., Nur, S., Emil Adly, S. T., & SH, L. (2016). Model Kebijakan Antisipatif Mengatasi Kemacetan Lalu Lintas Darat di Kota Batam. Prosiding Seminar Nasional INDOCOMPAC.
Kasogi, I., Setiawan, E., & Syauqy, D. (2020). Pengoptimalan Lampu Lalu Lintas menggunakan Metode Naïve Bayes Classifier. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(6), 1725–1731.
Pratiwi, R. H. (2016). Dampak Kemacetan Terhadap Kondisi Sosial Dan Ekonomi Pengguna Jalan Di Jakarta Utara (Studi Kasus: Pegawai Kantor Kecamatan Cilincing dan Pegawai Rumah Sakit Umum Kecamatan (RSUK) Cilincing Jakarta Utara). Fakultas Ekonomi dan Bisnis Unpas Bandung.
Rasyid, A. D. A., Aulia, R., & Fathurrachman, M. R. (2020). Penerapan Aplikasi Online pada Sistem Transportasi Umum Massal untuk Meningkatkan Minat Masyarakat dalam Upaya Mengurangi Kemacetan. Sainteks, 15(2). DOI: 10.30595/sainteks.v15i2.6308
Wahyunita, S., Azhar, Y., & Hayatin, N. (2020). Analisa Sentimen Tweet Berbahasa Indonesia dengan Menggunakan Metode Pembobotan Hybrid TF-IDF pada Topik Transportasi Online. Jurnal Repositor, 2(2), 185–192. https://doi.org/10.22219/repositor.v2i2.238
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of World Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.