Classification of Traffic Congestion in Indonesia Using the Naive Bayes Classification Method

Authors

  • Abdul Robi Padri Universitas Raharja, Banten, Indonesia
  • Asro Asro Universitas Raharja, Banten, Indonesia
  • Indra Indra Universitas Raharja, Banten, Indonesia

DOI:

https://doi.org/10.58344/jws.v2i6.285

Keywords:

congestion classification, naïve bayes, traffic

Abstract

The purpose of this research is to analyze the accuracy of congestion data using Google Colab in detecting congestion by the province in Indonesia the author tries to test strategies for dealing with congestion in the Indonesian region by utilizing the Naïve Bayes method. In this journal, apply with Google Collab . This research uses data that comes from crawling data on Twitter. Using the Naive Bayes method to find the shortest route is efficient and not congested. Implementation of online school transportation using the naive Bayes method in minimizing travel costs to pick up students can reduce traffic jams, reduce accidents, reduce student tardiness, and minimize travel costs. The Naive Bayes method can be used to identify relevant information about traffic jams in Indonesia through Twitter data with a good degree of accuracy. These results can assist decision-making and strategic planning in overcoming the problem of traffic congestion in Indonesia. Therefore, this research implies that it can help improve the accuracy of traffic congestion data in Indonesia. By using Google Colab, more advanced analysis methods and machine learning algorithms can be applied to process the existing traffic data. Additionally, utilizing Google Colab allows for fast and efficient data processing.

References

Ardini, A., & Lutfiyana, N. (2018). Metode Transportasi Untuk Mengoptimalkan Biaya Pengiriman Barang Pada PT Trimuda Nuansa Citra Jakarta. Information System For Educators And Professionals: Journal Of Information System, 3(1), 55–66.

Darmawan, A., & Makruf, M. (2023). Deteksi Gaya Belajar Siswa SMA pada Virtual Based Learning Environment (VBLE) dengan Decision Tree C4. 5 dan Naive Bayes. KLIK: Kajian Ilmiah Informatika Dan Komputer, 3(5), 532–544. https://doi.org/10.30865/klik.v3i5.760

Desmira, D., Kautsar, A., & Darmawan, A. W. (2015). Prototype Perancangan Informasi Kemacetan Jalan Tol Berbasis Mikrokontroler At89s52 Dengan Tampilan LCD. PROSISKO: Jurnal Pengembangan Riset Dan Observasi Sistem Komputer, 2(2).

Dewa, W. A., Maknunah, J., & Putri, A. D. (2021). Penerapan Metode Naïve Bayes untuk Menentukan Pengajuan Polis Baru pada PT.“XYZ.” Jurnal Ilmiah Komputasi, 20(1), 83–92. https://doi.org/10.32409/jikstik.20.1.2696

Febriyani, E., & Februariyanti, H. (2023). Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Algoritma Naive Bayes Classifier Di Twitter. Jurnal Tekno Kompak, 17(1), 25–38. https://doi.org/10.33365/jtk.v17i1.2061

Habiba, A., Isnanto, R. R., & Suseno, J. E. (2023). The Effect of Chi Square Feature Selection on the Naïve Bayes Algorithm on the Analysis of Indonesian Society’s Sentiment About Face-to-Face Learning During the Covid-19 Pandemic. JST (Jurnal Sains Dan Teknologi), 12(1).

Hariansyah, M. (2018). Millenials “Bukan Generasi Micin.” Guepedia.

Harjanta, A. T. J. (2015). Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining. Jurnal Informatika Upgris, 1(1 Juni). https://doi.org/10.26877/jiu.v1i1%20Juni.804

Hermanto, N., Hermaliani, E. H., & Sutinah, E. (2017). Vogell’s Aproximation Method dalam Optimalisasi Biaya Transportasi Pengiriman Koran pada PT. Arah Medialog Pembangunan. Jurnal Teknik Komputer AMIK BSI, 3(1), 30–36. https://doi.org/10.31294/jtk.v3i1.1340

Indriyani, L. (2019). Analisis penerapan Naïve Bayes untuk memprediksi resiko kredit anggota koperasi keluarga guru. Jurnal Informatika, 6(2), 262–270. https://doi.org/10.31294/ji.v6i2.5724

Janah, S. H., Nur, S., Emil Adly, S. T., & SH, L. (2016). Model Kebijakan Antisipatif Mengatasi Kemacetan Lalu Lintas Darat di Kota Batam. Prosiding Seminar Nasional INDOCOMPAC.

Kasogi, I., Setiawan, E., & Syauqy, D. (2020). Pengoptimalan Lampu Lalu Lintas menggunakan Metode Naïve Bayes Classifier. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(6), 1725–1731.

Pratiwi, R. H. (2016). Dampak Kemacetan Terhadap Kondisi Sosial Dan Ekonomi Pengguna Jalan Di Jakarta Utara (Studi Kasus: Pegawai Kantor Kecamatan Cilincing dan Pegawai Rumah Sakit Umum Kecamatan (RSUK) Cilincing Jakarta Utara). Fakultas Ekonomi dan Bisnis Unpas Bandung.

Rasyid, A. D. A., Aulia, R., & Fathurrachman, M. R. (2020). Penerapan Aplikasi Online pada Sistem Transportasi Umum Massal untuk Meningkatkan Minat Masyarakat dalam Upaya Mengurangi Kemacetan. Sainteks, 15(2). DOI: 10.30595/sainteks.v15i2.6308

Wahyunita, S., Azhar, Y., & Hayatin, N. (2020). Analisa Sentimen Tweet Berbahasa Indonesia dengan Menggunakan Metode Pembobotan Hybrid TF-IDF pada Topik Transportasi Online. Jurnal Repositor, 2(2), 185–192. https://doi.org/10.22219/repositor.v2i2.238

Downloads

Published

2023-06-30

How to Cite

Robi Padri, A., Asro, A., & Indra, I. (2023). Classification of Traffic Congestion in Indonesia Using the Naive Bayes Classification Method. Journal of World Science, 2(6), 877–888. https://doi.org/10.58344/jws.v2i6.285