Evaluating the Performance of Association Rules in Apriori and FP-Growth Algorithms: Market Basket Analysis to Discover Rules of Item Combinations

Authors

  • Dedy Dwiputra Universitas Esa Unggul, Jakarta, Indonesia
  • Agung Mulyo Widodo Universitas Esa Unggul, Jakarta, Indonesia
  • Habibullah Akbar Universitas Esa Unggul, Jakarta, Indonesia
  • Gerry Firmansyah Universitas Esa Unggul, Jakarta, Indonesia

DOI:

https://doi.org/10.58344/jws.v2i8.403

Keywords:

market basket analysis, association rules, a priori, fp-growth

Abstract

This study focuses on applying data mining techniques, especially association rules mining using the Apriori and FP-GROWTH algorithms, for market basket analysis on PT. XYZ is a pharmaceutical company in Indonesia. A quantitative methodology uses a dataset of 100,498 transactions originating from 432,356 rows of data covering July to December 2022 in the JABODETABEK area. Apriori and FP-GROWTH algorithms are applied for association rules mining. The results show that FP-GROWTH has the fastest execution time of 84,655 seconds. However, the memory usage for the Apriori algorithm is the lowest at 482.32 MiB, with increments of: 0.21 MiB. For the rules generated, the two algorithms, both Apriori and FP-GROWTH, produce the same number of rules and values of support, confidence, lift, Bi-Support, Bi-Confidence, and Bi-Lift. In conclusion, Apriori is recommended for sales datasets if memory usage and ease of implementation are important. However, if the speed of execution time and a large amount of data are considered, FP-GROWTH is a better choice because the execution time is faster for large amounts of data. However, the choice of algorithm depends on the specific analysis objectives, itemset size, data scale, and computational capabilities. Results from association rules mining provide evidence of product popularity, purchasing patterns, and opportunities for strategic marketing and inventory management. These findings can help PT. XYZ improves business efficiency, understands customer behavior, and increases profitability.

References

Alamsyah, B. P., Rosiani, U. D., & Wakhidah, R. (2021). Sistem Rekomendasi Pembelian Barang berdasarkan Pola Pembelian Konsumen menggunakan Metode Association Rule Apriori. Seminar Informatika Aplikatif Polinema, 72–76.

Alfiqra, A., & Alfizi, F. Y. (2018). Penerapan Market Basket Analysis Menggunakan Proses KDD (Knowledge Discovery in Database) Sebagai Strategi Penjualan Produk Swalayan (Studi Kasus: Swalayan X).

Ariana, A. A. G. B., & Asana, I. M. D. P. (2013). Analisis Keranjang Belanja dengan Algoritma Apriori pada Perusahaan retail. SESINDO 2013, 2013.

Daliyah, R. (2020). Analisis Perilaku Konsumsi Pengguna Aplikasi E-Money pada Mahasiswa Fakultas Ekonomi Universitas Negeri Surabaya. Jurnal Pendidikan Tata Niaga (JPTN), 8(3), 946–952. https://doi.org/10.26740/jptn.v8n3.p946-952

Dhanalakshmi, M., & Sankari, E. S. (2014). Privacy preserving data mining techniques-survey. International Conference on Information Communication and Embedded Systems (ICICES2014), 1–6. DOI: 10.1109/ICICES.2014.7033869

Diandra, D., & Syahputra, E. (2021). Covid-19 dan Strategi Bertahan Bisnis di Era Inovasi Digital: Dalam Perspektif Kapabilitas Digital Keunggulan Sumber Daya. Prosiding Industrial Research Workshop and National Seminar, 12, 1102–1107.

Kaur, M., & Kang, S. (2016). Market Basket Analysis: Identify the changing trends of market data using association rule mining. Procedia Computer Science, 85, 78–85. https://doi.org/10.1016/j.procs.2016.05.180

Kurniawan, F., Umayah, B., Hammad, J., Nugroho, S. M. S., & Hariadi, M. (2018). Market Basket Analysis to identify customer behaviours by way of transaction data. Knowledge Engineering and Data Science, 1(1), 20.

Muhammad, B. (2019). Implementasi Data Mining untuk Prediksi Standar Hidup Layak Berdasarkan Tingkat Kesehatan dan Pendidikan Masyarakat. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 2(2), 33–37.

Qoniah, I., & Priandika, A. T. (2020). Analisis Market Basket Untuk Menentukan Asossiasi Rule Dengan Algoritma Apriori (Studi Kasus: Tb. Menara). Jurnal Teknologi Dan Sistem Informasi, 1(2), 26–33. https://doi.org/10.33365/jtsi.v1i2.368

Sayyid, M. (2020). Strategi Pemasaran Bisnis Farmasi. Zifatama Jawara.

Sudirman, A., Alaydrus, S., Rosmayati, S., Syamsuriansyah, S., Nugroho, L., Arifudin, O., Hanika, I. M., Haerany, A., Rusmana, F. D., & Rijal, K. (2020). Prilaku konsumen dan perkembangannya di era digital.

Sumarwan, U. (2014). Model keputusan konsumen. Perilaku Konsumen, 5, 1–41.

Umar, E., Manongga, D., & Iriani, A. (2022). Market Basket Analysis Menggunakan Association Rule dan Algoritma Apriori Pada Produk Penjualan Mitra Swalayan Salatiga. Jurnal Media Informatika Budidarma, 6(3), 1367–1377. http://dx.doi.org/10.30865/mib.v6i3.4217

Werdiningsih, I., Kom, M., Nuqoba, B., Kom, M., & Muhammadun, S. S. (2020). Data Mining Menggunakan Android, Weka, dan SPSS. Airlangga University Press.

Downloads

Published

2023-08-30